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Abstract 
TheHuMs- 'on system automates the 

design of HUMS architecanes. The automated 
design process involves selection of solutions from 
a lare space of designs as well as pure synthesis of 
designs. Hence the whole objective is to efficiently 
search for or synthesize designs or parts of designs 
in the database and to integrate them to form the 
entire system design. The automation system adopts 
two approaches in order to produce the designs: (a) 
Bottom-up approach and (b) Top down approach. 
Both the approaches are endowed with a Suite of 
quantitative and quahtative techniques that enable 
a) the selection of matching component instances, 
b) the determination of design parameters, c) the 
evaluation of candidate designs at component-level 
and at system-level, d) the perfamance of cost- 
benefit analyses, e) the performance of trade-off 
analyses, etc. In short, the automation system 
attempts to capitalize on the knowledge developed 
fiom years of experience in engineering, system 
design and operation of the HUMS systems in order 
to economically produce the most optimal and 
domain-specific designs. 

1. Introduction 
Engineering disciplines progress through 

several distinct stages in their evolution: Ad-hoc, 
Formal and rigorous, and hilly, Automation [l]. 
This work focuses on advancing HUMS to the 
automation stage since HUMS, as a discipline, is 
mature and well established now with various 
systems already deployed and in existence for a 

long period. The automation system so developed 
would attempt to capitalize on the knowledge 
developed from years of experience in engineuing, 
system design and operation of the HUMS systems 
in order to economically produce the most optimal 
and domain-~cific designs. 

The design of software systems has largely 
been performed manually so far. The challenge in 
the automation of system designs is (a) the 
development of design methodologies that support 
automation, (b) the accumulation of knowledge - 
components that make up design, trade-offs 
involved, decision making Criteria, requirements, 
etc. - and also (c) the provision of means to 
evaluate the quality of the designs. The automation, 
if successful, would be highly beneficial in the 
following ways: (a) minimization of costs involved, 
(b) improvement in productivity, and (c) production 
of optimal and innovative designs, etc. 

Our automated design process involves two 
main techniques: (a) Selection of solutions f?om a 
large space of designs, and (b) Synthesis of designs. 
However, the automation process is not an absolute 
Artificial Intelligence (AI) approach though it uses 
a knowledge-based system that epitomizes a 
specific HUMS domain. The process uses a 
database of solutions as an aid to solve the 
problems rather than creating a new design in the 
literal sense. Since searching is adopted as the main 
technique, the challenges involved are (a) to 
minimize the effort in searching the database where 
a very large number of possibilities exist, (b) to 
develop representations that could conveniently 
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allow us to depict design knowledge evolved over 
many years and (c) to capture the required 
i n f m t i o n  that aid the automation process. 

process: Sources and Developers. Sources group 
includes end-users, domain experts, requirements 
analyst, etc. and the Developers group involves 
requirements analyst, system developers, etc. Due 
to the ~ t u r e  of the data required by the automation 
system and the partial reliance on humans for 
decision-making, the developers group would be 
more successful in intemcthg with the automation 
sy- 

There are three basic design approaches that 
the automation system could adopt such as: (a) 
Bottom-up approach, (b) Topdown approach and 
(c) Hybrid approach. Bottom-up approach depends 
on a hierarchical partitioning of the system into 
multiple levels and builds the entire system design 
fiom scratch starting from the bottom level up. On 
the contrary, the top down approach first starts with 
an entire system design and then drills down to 
lower levels by searching for the individual 
component instances that can fit the design. In this 
paper, we shall focus on bottom-up approach since 
it is easy to follow, and a large majority of its 
techniques are common among the approaches. 

involving the following: 

Two groups of participants are involved m this 

The bottom-up approach is a five-step process 

Capturing Requirements Data 
Capturing H U M S  component 
information 
Designing the architecture 
Evaluating the candidate designs 
Producing the System Output: 
Architecture Specification 

The rest of the paper explains in detail how 
each of these steps is implementea Section 2 
discusses the related previous work by others. The 
automation system is made up of a numbex of 
building blocks, which are explained in Section 
3.Sections 4 and 5 explain two of the three input 
resources used by the automation system namely 
the Requirements Information and the Components 
information respectively. The selection of HUMS 
components for the architecture and the 
determination of their configurations are explained 

in section 6. The automated design process, the 
roles played by different building blocks of 
automation system and the evaluation of candidate 
designs are desc r i i  in section 7. Fmally, section 8 
concludes the paper with a summary and future 
Work. 

2. Related Work 
Software architecture has more influence on 

the system’s quality attributes than the code-level 
practices [q. The advantages of architecture as a 
high-level abstraction were realized and the 
different techniques to design architectures and to 
evaluate architectures emaged [4,14,15]. This 
work also resides at the architecture-level, thus 
working at an abstraction level that allows analysis 
of designs even without accurate or low-level 
details. 

The Architecture Tradeoff Analysis method 
(ATAM) [6,7J is a technique that helps the designer 
to perfii trade-off analyses in a principled manner 
thereby enabling him to make well informed as well 
as optimal tradeoffs. ATAM also incorporates a 
process model that an organization must follow 
while developing architecture. Our work is closely 
related to ATAM in that it also perfom tradeoff 
analyses during the synthesis of architecture but it 
focuses largely on automation of tradeoff analyses 
with very little user intervention. 

Attribute-based Architectural Styles (ABM) 
[SI are architecture styles that are endowed with a 
reasoning hunework useful in analysis of the style 
with reference to a specific attribute of interest. A 
given ABAS focuses exclusively on a single quality 
attribute and thus one needs to consider multiple 
ABMs to satis@ several quality attributes. This 
work takes advantage of all the work p e r f d  by 
quality attribute communities and provides us a 
formal &mework to analyze and make design 
decisions. 

S A A M  is an evaluation method that uses 
scenarios in analyzing architecture for different 
quality attributes [9]. The architecture quality is 
analyzed by measuring the extent of code 
modifications required to implement a scenario. 
SAAM is well suited to be used during 
implementation stage, while ours is appropriate to 
be used during design stage to uncover the 
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problems with the architecture and to improvise it 
before implementation. 

Automation of design processes has been 
researched and developed m  compute^ systems as 
well as wide variety of other disciplines [3,12]. In 
[3], the authors explain and demonstrate how 
automation can play a vital role m success of design 
engineering but their focus is at a lower abstraction 
level than that consi- m our work 

Much workis underway on the 
standardization of architectures for specific HUMS 
functions OT ckmains [10,11]. Nm-proprietary 
standards can promote an mvirommmt where end 
users have multiple choices that  ax^ economical, as 
well as high in quality. Our work coexists with and 
upgrades this work by incorporating lot of elements 
fiom the standard archikcture like functional layers 
involved, intdices that need to be supported, etc. 
and by adding additional value by enabling analysis 
and development of system architectures based on 
the standard architectures published. 

3. Automation System Building Blocks 
Figure (1) shows the basic building blocks of 

the HUMS design automation system. The blocks 
bounded by the dashed lines represent processes 
while the other blocks indicate infinmation 
repositories. 

The four infhnation repositories are: (a) 
Requirements, @) Components library, (c) Design 
Space, and (d) Design Specification. Requirements 
block contams all requirements information 
supplied by the user. Components library is a 
repository of component instances supplied by 
several vendors. Design space is a database of 
designs, which may be templates that can be 
instantiated to satisfy specific needs, or specific 
designs themselves. Design Specification block 
stands for the final design representation that is 
generated by the automation system at the end of its 
execution. The automation system must satisfy two 
requirements while generating the design 
specification: (a) Design justifications must be 
provided at every stage, and (b) Architecture must 
be specified using graphical and textual forms [4, 
131. 

Explorer explores different combinations, or 
The two processes are: Explorer and Evaluator. 

searches for solutions at every stage of the design 
process and comes out with a set of candidate 
design solutions that solve the problem at hand at 
that level. Evaluator checks or evaluates the 
candidate architectures at every stage, eliminates 
the bad candidates and retains the best ones. Thus, 
explorer and evaluator work closely - back-to-back 
Explorer completes one step, interacts with 
evaluator to narrow down the possible candidates 
and then progresses on to the next stage. This 
process continues till the entire system design is 
completed. 

Some of the exploration or reasoning 
techniques that could be part of Explorer are given 
below: 

Compare the requirements data against 
the parameter values (Direct 
Comparisons, Indirect Comparisons, etc.) 
Perform Cost-benefit analyses 
Perform Trade-off analyses 
Use a criteria list or design guidelines in 
the selection of components 
Search the designs database for a fitting 
solution 
Use engineering/formal techniques or 
Quantitative design techniques 
Use heuristics to solve complex design 
problems 
others 

w 
I 
I 
I 
I 

U I 
~ ~~~~ 

Figure 1 : Automation System Building Blocks 
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Similarly, the techniques that could be packed 
within the Evaluator process are listed as follows: 

Use evaluation metrics to ascertain 
quality (a) at system level, (b) at 
component level 
Build a paretooptimal set to eliminate 
bad candidate architectu~s 
Use heuristics in evaluation 

Component 
Sensor 

Transducer 

Sensor-Node 
bus 
Node 

Network 

4. Capturing Requirements 
Information 

Irrespective ofthe design approach adopted, 
the requirements must be specified m a way that 
enables the automation system to choose the most 
optimal design. The general tasks that are involved 
in any design process drive how the requirements 
information must be represented. Some of the 
general tasks are direct comparisons, cost benefit 
analyses, tradeoff analyses, etc. 

information must allow the ready employment of at 
least the most general strategiedtactics listed above. 
Let us now look at a few objectives that a 
representation should satisfy: 

The way we represent requirements 

All details (Quantitative and Qualitative) 
pertinent for the design process must be 
captured 
Must support a format that allows 
qualitative analysis also 
Data and units specified must be generic 
enough to allow selection from among 
component instances of different types 
Whenever data is inaccurate, the 
associated degree of uncertainify must be 
specified 
Future growth/usage profile must be 
captured wherever appropriate 

basedonXMLthatdefinesallthepertinent 
infixmation that must be captured during the 
requirements gathering phase. These templates 
enable developers to gather enough information and 
in correct form so as to perform effective designing. 
One difference from the regular requirements 
analysis process is that here the details gathered are 
a mixture of ‘what’ and ‘how’ inf’tion as 
against the usual practice of recording ‘what’ 
information alone. The use of X M L  in the 

We have dtvelapedrequirements templates 

Description 
Senses the measurement 
parameters 
Converts any type of input signal 
to electrical signal appropiate for 
the nodes 
Connects the sensors to the 
computing node 
ComputerdNodes where all 
processes reside 
LAN, WAN or Internet 

definition of templates provides better organization 
and extensibility options. Refer to Appendix A for a 
sample requirements representation. 

5. System Decomposition/ 
Components 

System decomposition is essential for both 
topdown approach and bottom-up approach. A 
HUMS system is decomposed into components. 
E.g.: Sensors, Nodes. Multiple vendm exist who 
can supply these components and a vendor-supplied 
component is called component instance. Thus, 
there exist multiple component instances for a gim 
component. 

Table 1: System Decomposition Adopted 

connecting all the nodes 
Processes Processes that implement HUMS 

The design approach comes out with a system 
design that describes what components make up the 
system and how they are interconnected. It also 
specifies the subset of suitable component instances 
that can be used for the components specified as 
part of the design. 

The HUMS system could be decomposed in 
multiple ways. So, the most important requirement 
is that the specific decomposition chosen must (a) 
accelerate the selection of best components, and (b) 
ensure the attainment of quality attributes. We have 
chosen the most fundamental decomposition 
possible that gives the maximum flexibility in using 
the components in composing system designs. 
Table 1 depicts the system decomposition into 
various components. 
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6. Selection of Components & their 
Configurations 

This section briefly descriis how the lower 
level components like sensors, transducers, nodes, 
etc. are selected and how their configurations are 
determined. Once the nodes have been selected, the 
design technique explained m section 7 can be used 
to map software architecture onto these nodes. 

The user specifies the following sensor 
inhrmation: (a) Location of sensors, @) Type of 
sen-, (c) - * t information related to 
sensors, etc. This information directly allows us to 
select sensors. The rest of the components like 
transducers and nodes are cletembed based on five 
factors namely: (a) Bandwidth limitations, (b) 
Buffer limitations, (c) Sensor, Transducer topology, 
(d) Processing Speed, and (e) Storage requirements. 
However only those CoIIlpOnenf instances that pass 
the evaluation by weight heuristic are considered. 
See Appendix D for sample weight heuristic. 

Bandwidth Limitations: 

multiple sensors are comKcfed to the same 
consumer (transducer or node). However, the 
number of sensorsthat can be connected to the 
same consumer depends on the external I/O Bus 
capacity, besides other factors. Our work uses a 
greedy algorithm to assign multiple sensors to 
transducers and then multiple transducers to nodes 
by maximizing the bandwidth utilizations. For 
example, if sensors with data rates of (in unitdsec) 
2,3,7,10 and if transducers with maximum 
capacity of 15 unitdsec are present, two transdurn 
would be chosen to connect to the 4 Sensors-one 
receiving 15 unitdsec and the other 7 unitdsec. 
This approach thus minimizes co~lsumers required. 

Sensors produce data at a specific rate and 

Bufler Limitations: 

transducer based on bandwidth considerations can 
be supported because the limited buffer space 
available at the transducer further restricts the 
number of sensors connected. The same argument 
applies to the connection of transducers to nodes. 
We alter the sensor-transducer mapping and the 
transducer-node mapping based on buffer space as 
the second step. This problem is mainly due to the 

Note that not all sensors that were mapped to a 

periodicity of the producers: Some producers are 
periodic and others are aperiodic as shown in Figure 
(2). For aperiodic case, the consumer must satis@ at 
least the condition that the buffer space available 
must be greater than/equal to twice the peak data 
rate. 
I I 

It 

Figure 2: (a) Periodic Sensor @) Aperiodic 
Sensor 

Sensor, Transducer Topology= 
The distance over which a sensor can 

communicate effectively affects the position at 
which a consumer is located. Thus, the signal 
attenuation in the medium is an important 
consideration. Our work determines the positions of 
the consumers based on several factors like the 
power levels (pi, Pod of the transmitted signals and 
the attenuation coefficients (T) of the buses 
involved. For e.g., using fiber optic buses, the 

distance of separation, d = - (1 0 lOg,, -) 1 P, 
z P, 

Node Configuration: 

speed, memory capacity, disk space must be 
determined using some reliable techniques. We 
make use of custom benchmarks designed for 
specific domains or existing benchmarks in our 
decision-making. Such benchmarks could give us 
quantitative information related to multiple factors 
involved thereby allowing us to determine the node 
configuration. Table 2 displays the sample 
benchmark data that would help us to determine 

The configuration of the nodes like processing 
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disk space, bus bandwidth, processor speed, etc. 
assuming that all options could be expessed as 
transactions in HUMS systems. Refer to [ 161 for a 
more detailed account. Note: TPS stands for 
Transactions per second. 

Table 2: Relationship between TPS and file size 

File Size 
0.1 GB 

lo00 100 GB 

7. The Automated Design Process 
A designer relies on the design knowledge that 

has been accumulated over several years to guide in 
his design task This knowledge captured in the 
form of principles and guidelines could minimi7e 
errors and enable achievement of quality attributes. 
The design space or design library (see Figure 1) of 
the automation system stores this design knowledge 
in form of design templates called base models. 

A base model is like an architectural style [8, 
151 containing infarmaton about the components 
that make up the architecture and their topology. 
These models also possess quality attribute models 
(formula sections), which enable us to determine 
the effect of the base model on the specific quality 
attributes. These quality at!riiute models are similar 
to those discussed in [8] but their purpose in this 
design technique is to enable analyses as well as 
automation. 

The design space consists of several such base 
models and each model guarantees one or a few 
quality attributes alone. If base model ‘A ’ serves to 
improve quality attribute ‘B’, then model ‘A ’ 
disregards all quality attributes except ‘B ’. Thus, 
the base models tend to skew the 6nal design with 
respect to the quality attributes that they deal with, 
Figure 3 shows the specification of one of the base 
models called Flat Model that improves 
performance. 

Quality attributes are often in conflict with 
each other. Achieving one quality attribute often 
comes at the cost of another. For example, design 
decisions favoring good performance affect 
scalability, those favoring scalability affect 
availability, and so forth. Resolving between these 
competing set of quality attributes requires tradeoff 

analysis. This automated approach hinges on 
tradeoff analyses to develop the final design. 

Probcd speciicakn: FLAT MODEL 

ORMULAS 

r =TBL + T I L  + NBLITTR 

= (1-PBL) x (1-PNT) -x (1-rn) 

= (CAP - NBLY NBL 

F’igure 3: Base Model Specification: Flat Model 
for performance 

Since the base models tend to skew the final 
design towards one or a few quality attributes, the 
Explorer must merge multiple models together to 
develop a suitable design. So, we need two different 
specifications: (a) Base model specification to 
specify the architectural style and the quality 
attribute that is favored, (b) Merge specification that 
specifies how two different base models can be 
merged with each other. These specifications enable 
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the automation system to consider one base model 
after another and mere if needed on the fly to 
develop the hal design. 

A base model specification (see Figure 3) 
contains three sections: (a) ptotocol specification 
that explains the components, their responsibilities 
and the interconnections, (b) Topology that 
pictorially represents how the design is organized, 
and finally, (c) Formulas which are the quality 
attriiute models built for analyzing the effect of the 
model on diffgent quality attributes. Quality 
attriiute models shown are simplified for 
demonstration purposes but can be made realistic 
and in fact, sophistication can be built into them 
with the help of experts fiom several quality 
attriiute communities. 

quality attribute models: Performance (Latency 
time), Scalability and Availability. Latency Time is 
a function of processing time at the nodes involved 
and the interprocessor communication time. 
Scalability is expressed as a fimction of address 
capacity of top-level node while availability is a 
hct ion of reliability probabilities of all 
components that make up the system. Here's a 
quick run through the symbols used in the formulas 
section: LT - Latency time, A - Availability, S - 
Scalability, NBL - No of bottom level nodes, NMM 
- No of networks, 'ITL - Processing time of Top 
level node, TBL - Processing time of bottom level 
node, TTR - Interprocessor communication Time, 
PBL - Probability of failure of bottom level node, 
FTL - Probability of failure of top level node, PNT 
- Probability of failure of network, CAP - Address 
Capacity of Top level node. See appendix B for a 
few more sample base model specifications. 

In this paper, Formula sections present thre 

Analysis of the model= 
Latency is the time difference between the 

instant when the bottom-level nodes read sensor 
data and that when the top-level node outputs the 
results. 

Latency = {Time to process data at Ni} + 
{Time to transmit data by each Ni} + 
{Time to process data at top-level) 

levels between the bottom level and the top-level 
Since the introduction of any intermediate 

will add more cost components to the above 
formula, intuitively this model supports the design 
guideline for improving performance. 

Merging Designs 

has two approaches: 
Ifthere are n base models, then the Explorer 

Try all (n!) combinations possible till a 
satisfactory design results 
Merge the models m any order that 
minimks the number of combinations 

0 

Since the merger of two models is not a 
StraighHorward step, we provide another set of 
specifications called Merge Specifications to aid the 
automation system in its operations. Thus, merge 
specifications exist for merging any two base 
models together. 

These merge specifications will enable the 
explorer to combine any combination of base 
models, thus leading to m = nC2 + nC3 + . . . + n G ,  
+ nC, designs. The responsibility of the designer is 
to feed n base model specifications and n G  merge 
specifications and the system can automatically 
explore and possibly develop m designs. As can be 
seen, the value reaped due to automation can be 
tremendous for higher values of n. 

+ 
52 

I 8.. 
Merged Module 
exhibits the 
characteristics of I PvramidModel hnth the ?ww mdels  

Figure 4: Demonstration of merge process 

impact of different quality attributes that conflict 
These merge specifications must consider the 
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with one another. For example, increasing the 
number of levels gives better scalability but yields 
poorer p d i i c e  and similarly, increasing the 
number of replica managers increases availability 
but decreases performance, and so forth. This 
emphasizes the need for trade-off analyses. Let’s 
first take a look at merge specifications and then 
we’ll consider the txade-off analyses. 

Figure 4 displays figuratively how different 
base models are merged with one another. As the 
figure shows, the merger of Flat Model & Pyramrd 
Model results in a design which is influenced by 
two conflicting forces: Flat Model tends to lower 
the number of levels while Pyramid Model tends to 
increase the number of levels. The number of levels 
that should be in the final design is determined by 
performing tradeoff analysis. Appendix C shows a 
few sample merge specifications. 

Performa Scalability 
nce (ms) 

Tradeoff Analysis 
Every iteration of merging of base models 

results in structural changes, which impact the 
several quality athiiutes mvolved in d i f € i i t  ways. 
The tradeoff is achieved m an interactive miinner, 
i.e., the user umtrols the merging so as to achieve 
the desired benefits. Of course, the tradeoff 
analyses can also be completely automated if all the 
required information is stored. 

Demo run: 
Tradeoff analysis is explained with the help of 

a demo run. Table (3) shows the requirements 
information that contains three quality attributes for 
this demo. 

Availabi i  

Table 3: Sample Quality Attributes 
requirements 

Quality Attribute 
Perfimnance 

Requirement 
160 ms 

I Availabilitv I 95% I 

First, the performance model namely the flat 
model is used to achieve the required performance. 
Since this model favors performance, all other 
quality attributes except performance are 
disregarded as clearly depicted in Figure (5) & 
Table (4). The values of quality attributes are 
determined dynarmcally using the quality attribute 

models fkom the formula section. (See Figure 3) 
Latency time requirements are satisfactorily met but 
both Scalability and Availability requirements are 
not met. Note that the normalized latency time 
values are displayed in the graph and the 
corresponding actual values are displayed in table 4. 

E M  of F M  Model 

QResuB IUTarget 

Figure 5: Effect of Flat Model 

L 160 1 1.8 I 0.95 I 
105 I 1.11 I 0.33 i 

During the second iteration, the automation 
system searches for a base model that can improve 
scalability. Now the objective is to achieve both 
performance (that was obtained during the last 
iteration) and scalability. 

Table 5: Effect of Merging Flat Model with 
Pyramid Model 

0.268 

During this demo, the system merges the two 
base models - Flat model and Pyrarmd model, and 
the results are as shown in Figure (6) and Table (5). 
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Values are computed using quality auxiiute models 
in the base model specification (See Appendix B). 

As canbe seen, as the internalnodesare 
increased, the scalability increases but affects both 
performance and availability. However, the 
performance requirements are met even though it is 
takes higher value for NIN = 3. Thus, with this 
merging, both the performance and scalability 
requirements are met. The next iteration focuses on 
achieving availability. Note that figure 6 shows 
normalized latency times while Table 5 has actual 
values. 

~~~ 

Hat Model + Pyramid Model  

Wwmnce SCalaMity AvataMity 

Figure 6: Effect of Merging Flat Model with 
Pyramid Model 

The third iteration starts by a search for a base 
model that can guarantee availability. During this 
demo, a base model called Gossip model was 
chosen and was merged with the existing design 
(that resulted h m  merging Flat model and Pyrannd 
model). The results are shown in Figures (7,8) and 
Table (6). 

The user can control the synthesis of the 
design. After each merger7 the data regarding the 
quality attributes is mlayed  to the user. The user 
uses the data to understand the tradeoffs involved 
and makes the final decision about whether or not 
another design iteration is required For example, he 
may choose the design after the 3d iteration (See 
Figures 7,8) with NIN =3 andNRM = 3 ,4  or 5 
based on his interests. 

Flat Model + Pyramid Model + 
Godp Model 

2 

1.8 

1.6 

1.4 

1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 

Figure 7: Effect of merger of Flat Model, 
Pyramid Model and Gossip &Bel (NIN = 2) 

Rat M o d e l  +Pyramid Model +Gossip 
Model 

2.5 

2 

1.5 

1 

0.5 

0 

-W;Nw=l -+-NIK3;N?M=2 
. - -8. - - m;m # . w. e -;- 

Figure 8: Effect of merger of Flat Model, 
Pyramid Model and Gossip Model @IN = 3) 
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Table 6: Effect of merger of Flat Model, 
Pyramid Model and Gossip Model 

4 

8. Conclusion: 
Techniques for design, design automation and 

evaluation have been developed The design 
automation technique can automatically produce 
(n!) designs for n base models. Base models have 
been greatly simplified for the proof-ofconcept 
study and sophistication must be added to represent 
real time behavior. The mean values used for 
calculations and the benclmxirh used have to 
represent domain i d i t i o n .  

SINA 

No networking 
Networking Wireless 

Appendix 

Appendix A: Sample Requirements 

Table 7: Sample Requirements Information for 
sensors 

Temperature, Pressure, 

Fiber optic, piezoelectric, 

I wireless 1 

Appendix B: Base Model Speafidons 

Robad speciicalion: PYRAMID 
MODEL 

FORMULAS 

LT = TBL + TIL + TIN + (NBL + NIN) x l l R  

A = (1-PBL) m x  (1-PNT) MX (1-PTL) x (1- PIN) 

S = (CAP x 111 - NBL)/ NBL 

NOTE: 111: Iterator (Current number of levels 
considered) 

Figure 9: Base Model Specification: Pyramid 
Model for Scalability 

Measurement 
range/duespec Absolute values or Range 
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Appendix C: Merge Spea@xtions Rdocd speciicakn: GOSSIP MODEL 

a n  - El  
FORMULAS 

LT = TBL + l l L  + NBLxTTR+ NRM TGS 

A =  (1PBL NRY) =X (l-PNT) -X (1-PTL NRY) 

S = (CAP- NBLY NBL 

NOTE: TGS: Gossip lime per unit data 

Figure 10: Base Model Specification: Gossip 
Model for Availability (See [lq) 

NOTE: All specifications are implemented in 
XML. 

Merge specifcaf#r: FLATPYRAUID 
MODEL 

Figure 11: Merge Specification: Flat Model + 
Pyramid Model 

NOTE: All merge specifications are 
implemented in XML. Only a sample representation 
is shown in Figure (1 1) due to space constraints. 

Appendix D: Weight Heuristics 

Detennination of number of Transducers 8 their 
p0sitiOnS: 

1. Find BWm = max (BWTmsl, BWTmd.. . BWT-) 

2. Find BUFm = max (BUFrraal, BUF~nrn2 ... BUFT-) 

3. Find Wh = min (W~TWI, W~nrn2... WT-) 

4. For every type of sensing required { 

Forevery sensor, sj of the seleded sensing type { 
Find m, number of sensing locations 

Find r, data rate ofthe sensor sdected 

Rnd m’, number of sensors per transducer 
m’ =floor ( B W A )  

While (m’ x PBR x 2 >= BUFmax) 
m’ = mI-1; 

Find T, number of transducers required 

T = ceil (m’hn) 

L = 0 (Initialization) 

(Contd.) 
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Determination of number of Transducers &their 
positions (Contd): 

For every lransciucw, ti m T { 
Determine the postion & Sensor list of ti 

Find 5 s t ,  Length of buses used to 
conned ail sensorsin the list to ti 
nbusep=Tlbuses+cLsG 

1 
WST = m" WSTQ + L + M A , ,  

StorepositionQ llposiioftransducer,b 

1 
WT [k] = min (WST m, V j) 

Position [kl= position of transducer that give 
bast weight for this sensing type 

1 

Figure 12: Sample Weight Heuristic to select 
transducers 

NOTE: Weight heuristic principle: Select a 
sensor of the sum of its weight and the weights of 
the lightest instances of the other components 
satisfies the entire system's weight constraint. This 
principle is applied for every component. 
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